skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Holzapfel, Florian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the growing popularity of autonomous unmanned aerial vehicles (UAVs), the improvement of safety for UAV operations has become increasingly important. In this paper, a landing trajectory optimization scheme is proposed to generate reference landing trajectories for a fixed-wing UAV with accidental engine failure. For a specific landing objective, two types of landing trajectory optimization algorithms are investigated: i) trajectory optimization algorithm with nonlinear UAV dynamics, and ii) trajectory optimization algorithm with linearized UAV dynamics. An initialization procedure that generates an initial guess is introduced to accelerate the convergence of the optimization algorithms. The effectiveness of the proposed scheme is verified in a high-fidelity UAV simulation environment, where the optimized landing trajectories are tracked by a UAV equipped with an L1 adaptive altitude controller in both the offline and online modes. 
    more » « less